私のブログへようこそ

Senin, 23 Januari 2012

Tugas

1. Hitung nilai resistor yg mempunyai kode warna cokelat, kuning, hitam, merah & cokelat. 
2. Resistor 5.600 (lambang ohm) dg toleransi 10% mempunyai kode warna?
 
3. Apa fungsi dari trafo set-up?
4. Sebutkan fungsi induktor?
5. Sebutkan 4 fungsi kapasitor dalam rangkaian listrik!
Jawab
1. warna coklat  = 1
    warna kuning = 4
    warna hitam   = 0
    warna merah  = ×10² = 100
    warna coklat  = 1%
   Jadi, nilainya adalah 140 x 100 = 14000 ohm dengan toleransi 1%

2. warna hijau        = 5
    warna biru         = 6
    warna hitam      = 0
    warna coklat     = ×10¹ = 10
    warna perak      = 10%

3. Transformator set-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan.

4. Fungsi Induktor adalah untuk melawan fluktasi arus yang melewatinya.

5.
  • mencegah loncatan bunga api listrik pada rangkaian yang mengandung kumparan, bila tiba-tiba arus listrik diputuskan dan dinyalakan
  •  menyimpan muatan atau energi listrik dalam rangkaian penyala elektronik
  • memilih panjang gelombang pada radio penerima
  • sebagai filter dalam catu daya (power supply)

Rabu, 18 Januari 2012

Transformator


Transformator atau transformer atau trafo adalah komponen elektromagnet yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain.







Prinsip kerja


Transformator bekerja berdasarkan prinsip induksi elektromagnetik. Tegangan masukan bolak-balik yang membentangi primer menimbulkan fluks magnet yang idealnya semua bersambung dengan lilitan sekunder. Fluks bolak-balik ini menginduksikan GGL dalam lilitan sekunder. Jika efisiensi sempurna, semua daya pada lilitan primer akan dilimpahkan ke lilitan sekunder.

Hubungan Primer-Sekunder
transformator_scheme_ru.svg
Fluks pada transformator
Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah \delta\phi=\epsilon\times\delta\,t dan rumus untuk GGL induksi yang terjadi di lilitan sekunder adalah \epsilon=N\frac{\delta\phi}{\delta\,t}.
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka \frac{\delta\phi}{\delta\,t}=\frac{V_p}{N_p}=\frac{V_s}{N_s}dimana dengan menyusun ulang persamaan akan didapat \frac{V_p}{V_s}=\frac{N_p}{N_s} sedemikian hingga V_p\,I_p=V_s\,I_s. Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.

Kerugian dalam transformator

Perhitungan diatas hanya berlaku apabila kopling primer-sekunder sempurna dan tidak ada kerugian, tetapi dalam praktek terjadi beberapa kerugian yaitu:
  1. kerugian tembaga. Kerugian I^2\,R dalam lilitan tembaga yang disebabkan oleh resistansi tembaga dan arus listrik yang mengalirinya.
  2. Kerugian kopling. Kerugian yang terjadi karena kopling primer-sekunder tidak sempurna, sehingga tidak semua fluks magnet yang diinduksikan primer memotong lilitan sekunder. Kerugian ini dapat dikurangi dengan menggulung lilitan secara berlapis-lapis antara primer dan sekunder.
  3. Kerugian kapasitas liar. Kerugian yang disebabkan oleh kapasitas liar yang terdapat pada lilitan-lilitan transformator. Kerugian ini sangat memengaruhi efisiensi transformator untuk frekuensi tinggi. Kerugian ini dapat dikurangi dengan menggulung lilitan primer dan sekunder secara semi-acak (bank winding)
  4. Kerugian histeresis. Kerugian yang terjadi ketika arus primer AC berbalik arah. Disebabkan karena inti transformator tidak dapat mengubah arah fluks magnetnya dengan seketika. Kerugian ini dapat dikurangi dengan menggunakan material inti reluktansi rendah.
  5. Kerugian efek kulit. Sebagaimana konduktor lain yang dialiri arus bolak-balik, arus cenderung untuk mengalir pada permukaan konduktor. Hal ini memperbesar kerugian kapasitas dan juga menambah resistansi relatif lilitan. Kerugian ini dapat dikurang dengan menggunakan kawat Litz, yaitu kawat yang terdiri dari beberapa kawat kecil yang saling terisolasi. Untuk frekuensi radio digunakan kawat geronggong atau lembaran tipis tembaga sebagai ganti kawat biasa.
  6. Kerugian arus eddy (arus olak). Kerugian yang disebabkan oleh GGL masukan yang menimbulkan arus dalam inti magnet yang melawan perubahan fluks magnet yang membangkitkan GGL. Karena adanya fluks magnet yang berubah-ubah, terjadi olakan fluks magnet pada material inti. Kerugian ini berkurang kalau digunakan inti berlapis-lapisan.

Efisiensi
Efisiensi transformator dapat diketahui dengan rumus \eta=\frac{P_o}{P_i}\,100% Karena adanya kerugian pada transformator. Maka efisiensi transformator tidak dapat mencapai 100%. Untuk transformator daya frekuensi rendah, efisiensi bisa mencapai 98%.

Jenis-jenis transformator


  • Step-Up

Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.

  • Step-Down

step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.

  • Autotransformator

Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder.
Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).

  • Autotransformator variabel

Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.

  • Transformator isolasi

Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling kapasitor.


Transformator pulsa

Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.

Transformator tiga fase

Transformator tiga fase sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta (Δ).

Induktor


Sebuah induktor atau reaktor adalah sebuah komponen elektronika pasif (kebanyakan berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Kemampuan induktor untuk menyimpan energi magnet ditentukan oleh induktansinya, dalam satuan Henry. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat di dalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik.
Sebuah induktor ideal memiliki induktansi, tetapi tanpa resistansi atau kapasitansi, dan tidak memboroskan daya. Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Pada suatu frekuensi, induktor dapat menjadi sirkuit resonansi karena kapasitas parasitnya. Selain memboroskan daya pada resistansi kawat, induktor berinti magnet juga memboroskan daya di dalam inti karena efek histeresis, dan pada arus tinggi mungkin mengalami nonlinearitas karena penjenuhan.

Berkas:Electronic component inductors.jpg



Fisika

Induktansi (L) (diukur dalam Henry) adalah efek dari medan magnet yang terbentuk disekitar konduktor pembawa arus yang bersifat menahan perubahan arus. Arus listrik yang melewati konduktor membuat medan magnet sebanding dengan besar arus. Perubahan dalam arus menyebabkan perubahan medan magnet yang mengakibatkan gaya elektromotif lawan melalui GGL induksi yang bersifat menentang perubahan arus. Induktansi diukur berdasarkan jumlah gaya elektromotif yang ditimbulkan untuk setiap perubahan arus terhadap waktu. Sebagai contoh, sebuah induktor dengan induktansi 1 Henry menimbulkan gaya elektromotif sebesar 1 volt saat arus dalam indukutor berubah dengan kecepatan 1 ampere setiap sekon. Jumlah lilitan, ukuran lilitan, dan material inti menentukan induktansi.

Faktor Q

Sebuah induktor ideal tidak menimbulkan kerugian terhadap arus yang melewati lilitan. Tetapi, induktor pada umumnya memiliki resistansi lilitan dari kawat yang digunakan untuk lilitan. Karena resistansi lilitan terlihat berderet dengan induktor, ini sering disebut resistansi deret. Resistansi deret induktor mengubah arus listrik menjad bahang, yang menyebabkan pengurangan kualitas induktif. Faktor kualitas atau "Q" dari sebuah induktor adalah perbandingan reaktansi induktif dan resistansi deret pada frekuensi tertentu, dan ini merupakan efisiensi induktor. Semakin tinggi faktor Q dari induktor, induktor tersebut semakin mendekati induktor ideal tanpa kerugian.
Faktor Q dari sebuah induktor dapat diketahui dari rumus berikut, dimana R merupakan resistansi internal dan ωL adalah resistansi kapasitif atau induktif pada resonansi:
Q = \frac{\omega{}L}{R}
Dengan menggunakan inti feromagnetik, induktansi dapat ditingkatkan untuk jumlah tembaga yang sama, sehingga meningkatkan faktor Q. Inti juga memberikan kerugian pada frekuensi tinggi. Bahan inti khusus dipilih untuk hasil terbaik untuk jalur frekuensi tersebut. Pada VHF atau frekuensi yang lebih tinggi, inti udara sebaiknya digunakan.
Lilitan induktor pada inti feromagnetik mungkin jenuh pada arus tinggi, menyebabkan pengurangan induktansi dan faktor Q yang sangat signifikan. Hal ini dapat dihindari dengan menggunakan induktor inti udara. Sebuah induktor inti udara yang didesain dengan baik dapat memiliki faktor Q hingga beberapa ratus.
Sebuah kondensator nyaris ideal (faktor Q mendekati tak terhingga) dapat dibuat dengan membuat lilitan dari kawat superkonduktor pada helium atau nitrogen cair. Ini membuat resistansi kawat menjadi nol. Karena induktor superkonduktor hampir tanpa kerugian, ini dapat menyimpan sejumlah besar energi listrik dalam lilitannya.

Penggunaan


Induktor dengan dua lilitan 47mH, sering dijumpai pada pencatu daya.
Induktor sering digunakan pada sirkuit analog dan pemroses sinyal. Induktor berpasangan dengan kondensator dan komponen lain membentuk sirkuit tertala. Penggunaan induktor bervariasi dari penggunaan induktor besar pada pencatu daya untuk menghilangkan dengung pencatu daya, hingga induktor kecil yang terpasang pada kabel untuk mencegah interferensi frekuensi radio untuk dprd melalui kabel. Kombinasi induktor-kondensator menjadi rangkaian tala dalam pemancar dan penerima radio. Dua induktor atau lebih yang terkopel secara magnetik membentuk transformator.
Induktor digunakan sebagai penyimpan energi pada beberapa pencatu daya moda sakelar. Induktor dienergikan selama waktu tertentu, dan dikuras pada sisa siklus. Perbandingan transfer energi ini menentukan tegangan keluaran. Reaktansi induktif XL ini digunakan bersama semikonduktor aktif untuk menjaga tegangan dengan akurat. Induktor juga digunakan dalam sistem transmisi listrik, yang digunakan untuk mengikangkan paku-paku tegangan yang berasal dari petir, dan juga membatasi arus pensakelaran dan arus kesalahan. Dalam bidang ini, indukutor sering disebut dengan reaktor.
Induktor yang memiliki induktansi sangat tinggi dapat disimulasikan dengan menggunakan girator.

Konstruksi induktor


Induktor, skala dalam sentimeter.
Sebuah induktor biasanya dikonstruksi sebagai sebuah lilitan dari bahan penghantar, biasanya kawat tembaga, digulung pada inti magnet berupa udara atau bahan feromagnetik. Bahan inti yang mempunyai permeabilitas magnet yang lebih tinggi dari udara meningkatkan medan magnet dan menjaganya tetap dekat pada induktor, sehingga meningkatkan induktansi induktor. Induktor frekuensi rendah dibuat dengan menggunakan baja laminasi untuk menekan arus eddy. Ferit lunak biasanya digunakan sebagai inti pada induktor frekuensi tingi, dikarenakan ferit tidak menyebabkan kerugian daya pada frekuensi tinggi seperti pada inti besi. Ini dikarenakan ferit mempunyai lengkung histeresis yang sempit dan resistivitasnya yang tinggi mencegah arus eddy. Induktor dibuat dengan berbagai bentuk. Sebagian besar dikonstruksi dengan menggulung kawat tembaga email disekitar bahan inti dengan kaki-kali kawat terlukts keluar. Beberapa jenis menutup penuh gulungan kawat di dalam material inti, dinamakan induktor terselubungi. Beberapa induktor mempunyai inti yang dapat diubah letaknya, yang memungkinkan pengubahan induktansi. Induktor yang digunakan untuk menahan frekuensi sangat tinggi biasanya dibuat dengan melilitkan tabung atau manik-manik ferit pada kabel transmisi.
Induktor kecil dapat dicetak langsung pada papan rangkaian cetak dengan membuat jalur tembaga berbentuk spiral. Beberapa induktor dapat dibentuk pada rangkaian terintegrasi menhan menggunakan inti planar. Tetapi bentuknya yang kecil membatasi induktansi. Dan girator dapat menjadi pilihan alternatif.

Jenis-jenis lilitan

Lilitan ferit sarang madu

Lilitan sarang madu dililit dengan cara bersilangan untuk mengurangi efek kapasitansi terdistribusi. Ini sering digunakan pada rangkaian tala pada penerima radio dalam jangkah gelombang menengah dan gelombang panjang. Karena konstruksinya, induktansi tinggi dapat dicapai dengan bentuk yang kecil.

Lilitan inti toroid

Sebuah lilitan sederhana yang dililit dengan bentuk silinder menciptakan medan magnet eksternal dengan kutub utara-selatan. Sebuah lilitan toroid dapat dibuat dari lilitan silinder dengan menghubungkannya menjadi berbentuk donat, sehingga menyatukan kutub utara dan selatan. Pada lilitan toroid, medan magnet ditahan pada lilitan. Ini menyebabkan lebih sedikit radiasi magnetik dari lilitan, dan kekebalan dari medan magnet eksternal.

Rumus induktansi

KonstruksiRumusBesaran (SI, kecuali disebutkan khusus)
Lilitan silinderL=\frac{\mu_0KN^2\pi r^2}{l}
  • L = induktansi
  • μ0 = permeabilitas vakum
  • K = koefisien Nagaoka
  • N = jumlah lilitan
  • r = jari-jari lilitan
  • l = panjang lilitan
Kawat lurusL =200 \, l \left(\ln\frac{4l}{d}-1\right)10^{-9}
  • L = induktansi
  • l = panjang kawat
  • d = diameter kawat
Lilitan silinder pendek berinti udaraL=\frac{r^2N^2}{9r+10l}
  • L = induktansi (µH)
  • r = jari-jari lilitan (in)
  • l = panjang lilitan (in)
  • N = jumlah lilitan
Lilitan berlapis-lapis berinti udaraL = \frac{0.8r^2N^2}{6r+9l+10d}
  • L = induktansi (µH)
  • r = rerata jari-jari lilitan (in)
  • l = panjang lilitan (in)
  • N = jumlah lilitan
  • d = tebal lilitan (in)
Lilitan spiral datar berinti udaraL=\frac{r^2N^2}{(2r+2.8d) \times 10^5}
  • L = induktansi
  • r = rerata jari-jari spiral
  • N = jumlah lilitan
  • d = tebal lilitan
Inti toroidL=\mu_0\mu_r\frac{N^2r^2}{D}
  • L = induktansi
  • μ0 = permeabilitas vakum
  • μr = permeabilitas relatif bahan inti
  • N = jumlah lilitan
  • r = jari-jari gulungan
  • D = diameter keseluruhan

Dalam sirkuit elektrik

Sebuah induktor menolak perubahan arus. Sebuah induktor ideal tidak menunjukkan resistansi kepada arus rata, tetapi hanya induktor superkonduktor yang benar-benar memiliki resistansi nol. Pada umumnya, hubungan antara perubahan tegangan, induktansi, dan perubahan arus pada induktor ditentukan oleh rumus diferensial:
v(t) = L \frac{di(t)}{dt}
Jika ada arus bolak-balik sinusoida melalui sebuah induktor, tegangan sinusoida diinduksikan. Amplitudo tegangan sebanding dengan amplitudo arus dan frekuensi arus.
i(t) = I_P \sin(2 \pi f t)\,
\frac{di(t)}{dt} = 2 \pi f I_P \cos(2 \pi f t)
v(t) = 2 \pi f L I_P \cos(2 \pi f t)\,
Pada situasi ini, fase dari gelombang arus tertinggal 90 dari fase gelombang tegangan.
Jika sebuah induktor disambungkan ke sumber arus searah, dengan harga "I" melalui sebuah resistansi "R" dan sumber arus berimpedansi nol, persamaan diferensial diatas menunjukkan bahwa arus yang melalui induktor akan dibuang secara eksponensial:
\ i(t) = I (e^{\frac{-tR}{L}})

Analisis sirkuit Laplace (s-domain)

Ketika menggunakan analisis sirkuit transformasi Laplace, impedansi pemindahan dari induktor ideal tanpa arus sebelumnya ditunjukkan dalam domain s oleh:
Z(s) = Ls\,
dimana
L adalah induktansi
s adalah frekuensi kompleks
Jika induktor telah memiliki arus awal, ini dapat ditunjukkan dengan:
  • menambahkan sumber tegangan berderet dengan induktor dengan harga:
 L I_0 \,
(Pegiatikan bahwa sumber tegangan harus berlawanan kutub dengan arus awal)
  • atau dengan menambahkan sumber arus berjajar dengan induktor, dengan harga:
 \frac{I_0}{s}
dimana
L adalah induktansi
I0 adalah arus awal

Jejaring induktor

Induktor dalam konfigurasi kakap memiliki beda potensial yang sama. Untuk menemukan induktansi ekivalen total (Leq):
diagram induktor jajar
 \frac{1}{L_\mathrm{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots +  \frac{1}{L_n}
Arus dalam induktor deret adalah sama, tetapi tegangan yang membentangi setiap induktor bisa berbeda. Penjumlahan dari beda potensial dari beberapa induktor seri sama dengan tegangan total. Untuk menentukan todu total digunakan rumus:
diagram induktor deret
 L_\mathrm{eq} = L_1  + L_2 + \cdots + L_n \,\!
Hubungan tersebut hanya benar jika tidak ada kopling magnetis antar kumparan.

Energi yang tersimpan

Energi yang tersimpan di induktor ekivalen dengan usaha yang dibutuhkan untuk mengalirkan arus melalui induktor, dan juga medan magnet:
 E_\mathrm{stored} = {1 \over 2} L I^2
Dimana L adalah induktansi dan I adalah arus yang melalui induktor.

Semikonduktor

 Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator dan konduktor. Semikonduktor disebut juga sebagai bahan setengah penghantar listrik. Sebuah semikonduktor bersifat sebagai insulator pada temperatur yang sangat rendah, namun pada temperatur ruangan besifat sebagai konduktor. Bahan semikonduksi yang sering digunakan adalah silikon, germanium, dan gallium arsenide.
Semikonduktor sangat berguna dalam bidang elektronik, karena konduktansinya yang dapat diubah-ubah dengan menyuntikkan materi lain (biasa disebut pendonor elektron).


Doping Semikonduktor


Distribusi Fermi-Dirac sebagai dasar struktur pita dalam semikonduktor
Salah satu alasan utama kegunaan semikonduktor dalam elektronik adalah sifat elektroniknya dapat diubah banyak dalam sebuah cara terkontrol dengan menambah sejumlah kecil ketidakmurnian. Ketidakmurnian ini disebut dopan.
Doping sejumlah besar ke semikonduktor dapat meningkatkan konduktivitasnya dengan faktor lebih besar dari satu milyar.Dalam sirkuit terpadu modern, misalnya, polycrystalline silicon didop-berat seringkali digunakan sebagai pengganti loga

Persiapan bahan semikonduktor

Semikonduktor dengan properti elektronik yang dapat diprediksi dan handal diperlukan untukproduksi massa. Tingkat kemurnian kimia yang diperlukan sangat tinggi karena adanya ketidaksempurnaan, bahkan dalam proporsi sangat kecil dapat memiliki efek besar pada properti dari material. Kristal dengan tingkat kesempurnaan yang tinggi juga diperlukan, karena kesalahan dalam struktur kristal (seperti dislokasi, kembaran, dan retak tumpukan) mengganggu properti semikonduktivitas dari material. Retakan kristal merupakan penyebab utama rusaknya perangkat semikonduktor. Semakin besar kristal, semakin sulit mencapai kesempurnaan yang diperlukan. Proses produksi massa saat ini menggunakan ingot (bahan dasar) kristal dengan diameter antara empat hingga dua belas inci (300 mm) yang ditumbuhkan sebagai silinder kemudian diiris menjadi wafer.
Karena diperlukannya tingkat kemurnian kimia dan kesempurnaan struktur kristal untuk membuat perangkat semikonduktor, metode khusus telah dikembangkan untuk memproduksi bahan semikonduktor awal. Sebuah teknik untuk mencapai kemurnian tinggi termasuk pertumbuhan kristal menggunakan proses Czochralski. Langkah tambahan yang dapat digunakan untuk lebih meningkatkan kemurnian dikenal sebagai perbaikan zona. Dalam perbaikan zona, sebagian dari kristal padat dicairkan. Impuritas cenderung berkonsentrasi di daerah yang dicairkan, sedangkan material yang diinginkan mengkristal kembali sehingga menghasilkan bahan lebih murni dan kristal dengan lebih sedikit kesalahan.
Dalam pembuatan perangkat semikonduktor yang melibatkan heterojunction antara bahan-bahan semikonduktor yang berbeda, konstanta kisi, yaitu panjang dari struktur kristal yang berulang, penting untuk menentukan kompatibilitas antar bahan.
Perfect World Online Spear Thingy